


Table of Contents

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

© 2020 | All rights reserved. Incredibuild Software Ltd. 2

.......................................................................................

...............................................................................

...................................................................

..................................

....................................................................................

....................................................................................................

...............................................................................................

..................................................................................

.......................................................................................................

......................................................................................................

....................................................................................................................

....................................................................................................

...................................................................................

.............................................

3

3

4

5

5

6

9

13

18

19

21

22

22

23

The problem with C++ builds  

Why do C++ builds take so long? 

Why are longer builds such a problem? 

The good news is: there are things you can do about it! 

Getting a better build machine 

Reduce dependencies

Static Vs Dynamic linking

PImpl idiom and its advantages

Forward declarations 

Precompiled headers

Include guards

Single compilation unit

Turn off compiler optimizations

Distributed compilation – the incredibuild solution



© 2020 | All rights reserved. Incredibuild Software Ltd. 3

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

C++ is a great programming language. We are big fans. But there is a real issue with C++ build 

times. If you are building in C++, there is a good chance that your build times are long, 

presenting a real challenge to you, your managers, and the entire organization. This issue is not 

new nor is it rare. The issue is exacerbated especially in Agile work environments where 

continuous integration/continuous deployment (CI/CD) is the norm. You wouldn’t want your 

check-in to take a whole afternoon to get accepted, would you?

Some handle this issue by not doing much. Some others make use of these long build times to 

engage in leisure activities (as the old XKCD fencing joke goes). Others, however, identify this 

issue as something that requires their attention. We will leave it to you to guess which group we 

belong to. 

The problem with C++ builds

This question is on a lot of C++ developers’ minds. There are several reasons and possible 

explanations: 

The build is running on a machine low on resources

The build has too many dependencies

The build is using an outdated compiler/linker

The build is not using precompiled header files / is using them wrong

The compiler is asked to do the best optimizations

The codebase is not maintained / gold-plated code

The codebase is large

While a large number of header files that require parsing is one of the reasons it is not the only 

one as can be seen above. In general, the complex and dynamic way in which data is processed 

during compilation is one of the major reasons for longer build times.

Why do C++ builds take so long?

(The above image is hypothetical, any resemblance to your current project is purely coincidental) 



© 2020 | All rights reserved. Incredibuild Software Ltd. 4

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

This is a tricky question; however obvious it may sound. In the latest C++ foundation survey more 

than 40% of developers reported build times are a major problem and around more than 40% 

consider them as a minor problem. Only 17% don’t see it as a problem at all.  Waiting for the 

build to finish or prioritizing the development process accordingly (weekly builds) while delaying 

tests and skipping tasks just to avoid compiling them has a potentially devastating effect on the 

organization.  

It is not just the delivery time that is affected. The underlying quality of the software is affected by 

ignoring large build times. 

This is a well-known graph of relative cost to fix bugs based on the time of detection. If testing 

suffers due to longer build times, it is natural that more and more bugs will escape undetected to 

production. This will increase the overall cost of development and the quality of the software will 

suffer. In the current fiercely competitive market, top-quality frequent releases are vital. 

Shift left is swiftly gaining momentum. If developers are empowered to run tests before 

committing their code to the repository the external quality of the software will increase. If static 

code analysis is also done alongside, the internal quality of the software will increase too. 

Developer productivity is also adversely impacted by longer build times. If the feedback from the 

build takes longer, the train of thoughts leading to better code can adversely get affected too. 

So, there are both direct and indirect costs associated with longer build times.

Why are longer builds such a problem?

Requirements
elicitation

Relative cost to fix bugs in different phases of development

7

6

5

4

3

2

1

0
Architecture &

Design
Coding Integration

Testing
System
Testing

Bugs in
production

https://isocpp.org/files/papers/CppDevSurvey-2020-04-summary.pdf
https://www.incredibuild.com/blog/the-future-of-software-development


© 2020 | All rights reserved. Incredibuild Software Ltd. 5

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

In this guide, we are going to walk you through various ways to reduce C++ compilation time. 

Why would we want to do that? Are we not in the business of speeding up compilation? Isn’t 

writing a guide that presents other solutions to this problem a direct conflict of interest to our 

business? 

We sincerely believe there are plenty of things that can be done to improve compilation times. 

Indeed, the solutions presented in this guide are all valid and can offer real value in some cases, 

although it might require a bit of work before reaping their benefits. Using Incredibuild for 

speeding up the builds is a different ball game on a whole new league of its own. 

Without further ado, let us jump right in.

The good news is: 
there are things you can do about it!

This is a given. Investing in quality hardware is an obvious solution. We couldn’t write about 

reducing C++ build times without at least considering the possibility of acquiring better 

hardware. More RAM, better hard disks, and better CPU can improve your build times. 

Moore’s law depicted for computer RAMs:

Getting a better build machine

Size (in MB) of computer RAM

163842020

2010

2000

1990

1980

4096

https://en.wikipedia.org/wiki/Moore%27s_law


© 2020 | All rights reserved. Incredibuild Software Ltd. 6

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

Tight coupling between files, components, modules, and layers increases the build time. If the 

design diagram of the project is along these lines (the boxes can be files, modules, or layers too) 

then there is a problem. 

Questions are: Are all these dependencies required? Which of them can be easily decoupled? 

Which decoupling would need more work or is most risky? Bring in an architect to analyze the 

costs and benefits and do a re-engineering of the project. As the internal code quality improves 

there will be a decrease in the compilation times. This is a general technique not constrained to 

C++-based projects alone.

Let us take a running example to showcase some of the issues we talk about in this guide and 

show you how to mitigate them. We introduce some header files first:

Reduce dependencies

A tightly coupled system is always undesirable

Component A

Component E Component F

Component B Component C Component D

#pragma once

namespace SongLibrary

{

class Lyrics

 {

  // The code for Lyrics is complicated...

 };

}

Lyrics.h



© 2020 | All rights reserved. Incredibuild Software Ltd. 7

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

#pragma once

#include <memory>

#include <string>

#include <vector>

namespace SongLibrary

{

 class Lyrics;

class Playlist;

class Song

 {

private:

  std::wstring m_Writer;

  std::wstring m_CoAuthor;

  std::shared_ptr<Lyrics> m_Lyrics;

  int m_YearOfRelease;

public:

  int GetYearOfRelease() const { return m_YearOfRelease; }

  std::wstring GetWriter() const { return m_Writer; }

  std::wstring GetCoAuthor() const { return m_CoAuthor; }

  // Constructor for clients still using classic C++

  Song(std::wstring writer, std::wstring coauthor, const

Lyrics* const lyrics, int yearofrelease);

  // Constructor for clients of modern C++

  Song(std::wstring writer, std::wstring coaauthor, 

std::shared_ptr<Lyrics> lyrics, int yearofrelease);

  // Design Decision. Copy and Move allowed. No assignment

  Song(const Song&) = default;

  Song& operator=(const Song&) = delete;

  Song(Song&&) = default;

  // Design Creep. Unfortunately we have a requirement 

  std::vector<std::weak_ptr<Playlist>> m_Playlists;

 };

}

Song.h



© 2020 | All rights reserved. Incredibuild Software Ltd. 8

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

#pragma once

#include "Song.h"

#include "Lyrics.h"

#include <vector>

#include <chrono>

namespace SongLibrary

{

 class Playlist

 {

 private:

  std::vector<Song> m_Songs;

  std::chrono::duration<int> m_TotalPlayingTime;

  std::shared_ptr<Lyrics> m_LyricsOfCurrentSong;

public:

  std::wstring getPlayingTime();

  bool RemoveSongFromPlaylist(Song toberemoved);

  bool AddSongToPlayList(Song tobeadded);

 };

}

Playlist.h

Not a good 
design

How does the design of this system look like? 



© 2020 | All rights reserved. Incredibuild Software Ltd. 9

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

Do you see the circular dependency between Song and Playlist in the above diagram? 

How should the system actually look like? 

As you improve your design of your system, it will intrinsically improve your build times. 

(Checkout our excellent build monitor and visualization tool for easier analysis of bottlenecks and 

dependencies here). Also, as you improve your design other different ways to improve your 

build times will also become apparent as we see in the next section.

Much better 
design

This option might be platform-specific, but all modern operating systems have a way to 

dynamically link to code. 

Dynamic Linked Libraries (DLL in Windows)

Dynamically loaded modules (dylib in Macintosh)

Dynamically loaded libraries (DL in Linux)

Utilities that are rarely changed can go into dynamic libraries. Since the code is not getting 

compiled for every build of the system, this can drastically improve the compilation times. 

Making such a change again involves refactoring and reengineering. One of the costs you will 

have to incur is the versioning of such dynamic code. As and when the interface of a DLL 

changes, it is recommended to assign it a new version. One of the well-known versioning 

schemes is shown below:

Major Version. Minor Version. Build Number. Revision

Static Vs Dynamic linking

Mu

https://www.incredibuild.com/the-build-monitor


© 2020 | All rights reserved. Incredibuild Software Ltd. 10

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

If customers are using different versions of the product then the major version numbers for DLLs 

will be different. Maintaining them across product versions incurs a cost, but from the point of 

view of builds having DLLs are better than static linking.

We had introduced a running example in the previous section where we saw how to improve 

the design. Now let us further improve the design. First we notice that playlist has to be 

separated out of the SongLibrary namespace to an independent namespace. Let us do so:

#pragma once

#include "Song.h"

#include "Lyrics.h"

#include <vector>

#include <chrono>

namespace PlaylistNS

{

class Playlist

 {

private:

  std::vector<SongLibrary::Song> m_Songs;

  std::chrono::duration<int> m_TotalPlayingTime;

  std::shared_ptr<SongLibrary::Lyrics> 

m_LyricsOfCurrentSong;

 public:

  std::wstring getPlayingTime();

  bool RemoveSongFromPlaylist(SongLibrary::Song

toberemoved);

  bool AddSongToPlayList(SongLibrary::Song tobeadded);

  Playlist();

 };

}

Playlist.h (Changed)



© 2020 | All rights reserved. Incredibuild Software Ltd. 11

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

What do we see?

Now it is clear that we can separate everything in SongLibrary into an independent library. We 

see that nothing much changes in the SongLibrary. So we separate it out to a dynamic library. 

Components
getting clearer

Modularization 
into DLL

ge

Mo



© 2020 | All rights reserved. Incredibuild Software Ltd. 12

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

We will discuss the new pch.h/pch.cpp files in one of the upcoming sections. Let us concentrate 

on the the framework.h file. Here is what it has:

This is a mechanism in Windows to export functions from a DLL. Let us see how has the other 

files changed due to the creation of separate DLL. 

#pragma once

#ifdef SONGLIBRARY_EXPORTS

#define DECLSPECIFIER __declspec(dllexport)

#define EXPIMP_TEMPLATE

#else

#define DECLSPECIFIER __declspec(dllimport)

#define EXPIMP_TEMPLATE extern

#endif

Framework.h

Lyrics.h 
(Changed)



© 2020 | All rights reserved. Incredibuild Software Ltd. 13

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

As can be seen, the class Lyrics is exported from the DLL. A similar change will have to be done 

on Song.h too. But we also notice a warning which needs to be fixed:

Severity Code Description

SongLibrary::Song::m_Writer': class 

'std::basic_string<wchar_t,std::char_traits<wch

ar_t>,std::allocator<wchar_t>>' needs to have 

dll-interface to be used by clients of class 

'SongLibrary::Song'

Warning C4251 CodeAnalysis D:\Demo\Song

Library\Song.h

13

Project File Line

#include <vector>

#include "framework.h"

namespace SongLibrary

{

class Lyrics;

EXPIMP_TEMPLATE template class DECLSPECIFIER

std::shared_ptr<Lyrics>;

class DECLSPECIFIER Song

 {

private:

   ...

As can be seen, we are forced to generate all members of class std::shared_ptr<Lyrics>. Why so? 

Because STL classes at DLL interfaces is not a good  design choice. What can we do about it? 

Enter the PImpl!

PImpl is a well-known technique to improve the build time of C++-based projects by reducing 

the dependencies between classes. It is also known as compile-time firewall as it prevents the 

compiler from seeing the details of implementation. The implementation might change, but 

since the interface remains the same for the clients using the class, they don’t have to be 

recompiled. This greatly improves the performance. 

Let us take an example of the shiny new string class that was required to be designed:

PImpl idiom and its advantages

Fix for the warning



© 2020 | All rights reserved. Incredibuild Software Ltd. 14

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

Simpl

Simpl

-m_data:Rope

-m_data:Trie

+CountOfCharts()

+API_1()

+AP2_1()

ShinyNewString
Client 1

Client 2

-m_Ptrlmpl:Simpl

+CountOfCharts()

+API_1()

+AP2_1()

Application

Binary interface

Until the ABI changes for 

the ShinyNewString Clients 

need not be recompiled

+CountOfCharts()

+API_1()

+AP2_1()

Since the design uses a pointer to implementation, changes to internal implementation are 

opaque to external clients of the class. This is exactly why the technique is also known as 

compile-time firewall. 

As always, remember that there is a tradeoff and in the case of pImpl, this cost is performance. A 

level of indirection is necessary to execute the member functions of the class as it gets 

delegated to the underlying implementation class. Code becomes a bit more complex and also 

the testability of code decreases. But pImpl is a good technique to improve build times of 

C++-based projects.



© 2020 | All rights reserved. Incredibuild Software Ltd. 15

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

Let us go back to our running example to illustrate in code how pImpl idiom is used to fix our 

design. 

We have this interface:

class DECLSPECIFIER Song

{

private:

  std::wstring m_Writer;

  std::wstring m_CoAuthor;

  std::shared_ptr<Lyrics> m_Lyrics;

  int m_YearOfRelease;

public:

...

Song.h (With STL)

PImpl Design 
for Song Class

We change the design to:



© 2020 | All rights reserved. Incredibuild Software Ltd. 16

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

In the code this looks:

#pragma once

#include <memory>

#include <string>

#include <vector>

#include "framework.h"

namespace SongLibrary

{

class Lyrics;

 class SongImpl;

class DECLSPECIFIER Song

 {

private:

  SongImpl* m_songImpl;

public:

  int GetYearOfRelease() const;

  std::wstring GetWriter() const;

  std::wstring GetCoAuthor() const;

  // Constructor for clients still using classic C++

  Song(std::wstring writer, std::wstring coauthor, const

Lyrics* const lyrics, int yearofrelease);

  // Constructor for clients of modern C++

  Song(std::wstring writer, std::wstring coauthor, 

std::shared_ptr<Lyrics> lyrics, int yearofrelease);

  // Design Decision. Copy and move allowed. No assignment.

  Song(const Song&); // Can no longer be default. Why?

  Song& operator=(const Song&) = delete;

  Song(Song&&); // Can no longer be default. Why?

  ~Song(); // Naked pointer member needs a destructor.

 };

}

Song.h (With pImpl)

Only for demonstration. 

Please use smart pointers in 

production code. 



© 2020 | All rights reserved. Incredibuild Software Ltd. 17

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

Finally, here is the SongImpl class:

#pragma once

#include <string>

#include <memory>

namespace SongLibrary

{

class Lyrics;

 class SongImpl

 {

private:

  std::wstring m_Writer;

  std::wstring m_CoAuthor;

  std::shared_ptr<Lyrics> m_Lyrics;

  int m_YearOfRelease;

public:

  int GetYearOfRelease() const { return  m_YearOfRelease; }

  std::wstring GetWriter() const { return m_Writer; }

  std::wstring GetCoAuthor() const { return m_CoAuthor; }

  SongImpl(std::wstring writer, std::wstring coauthor, 

const Lyrics* const lyrics, int yearofrelease)

   :m_Writer{ writer }, m_CoAuthor{ coauthor }, 

m_YearOfRelease{ yearofrelease }, 

m_Lyrics(const_cast<Lyrics*>(lyrics))

  {}

  SongImpl(std::wstring writer, std::wstring coauthor, 

std::shared_ptr<Lyrics> lyrics, int yearofrelease)

   :m_Writer{ writer }, m_CoAuthor{ coauthor }, 

m_YearOfRelease{ yearofrelease }, m_Lyrics(lyrics)

  {}

  SongImpl(const SongImpl& other) :m_Writer{ other.m_Writer 

}, m_CoAuthor{other.m_CoAuthor},

   m_Lyrics{other.m_Lyrics}

  {}

 };

}

SongImpl.h

Internal implementation 

can be changed. Clients 

need not be recompiled. 



namespace SongLibrary

{

class Lyrics; 

class SongImpl

 {

private:

  std::wstring m_Writer;

  std::wstring m_CoAuthor;

  std::shared_ptr<Lyrics> m_Lyrics;

  int m_YearOfRelease;

public:

© 2020 | All rights reserved. Incredibuild Software Ltd. 18

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

If you have closely followed the pImpl idiom exposition, you will understand the gist of forward 

declarations. In the header for ShinyNewString, you should only be having a forward declaration 

of Simpl (which is the implementation class) and not #include the whole Simpl header. 

Forward declarations to classes and structures inside a header imply that you only need to 

include the relevant headers in the implementation file that use those classes. This decreases the 

inclusion of headers inside other headers thereby reducing the compilation times. 

For your reference, this is what gets included when you #inlcude <iostream>

For faster compilation times, try to use forward declarations as much as possible in header files 

reducing the inclusion of other headers.  Below we highlight one instance where we have used 

forward delcarations in our running example.

Forward declarations

Forward declaration.

Only a pointer is used in 

the header.



// pch.h: This is a precompiled header file.

// Files listed below are compiled only once, improving build 

performance for future builds.

// This also affects IntelliSense performance, including code 

completion and many code browsing features.

// However, files listed here are ALL re-compiled if any one of them 

is updated between builds.

// Do not add files here that you will be updating frequently as 

this negates the performance advantage.

#ifndef PCH_H

#define PCH_H

// add headers that you want to pre-compile here

#include "framework.h"

#endif //PCH_H

© 2020 | All rights reserved. Incredibuild Software Ltd. 19

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

Precompiled headers are binary files that have been generated from C or C++ header files that 

have been parsed and pre-processed. In a precompiled header file, both macros and 

declarations present in the original file are sorted resulting in a faster compilation. During 

compilation, the compiler checks if the modification timestamp of the header is later than that of 

the precompiled header and if so, do a sync to recreate the precompiled header file. 

It is possible to get a 6X reduction in compilation times using precompiled headers. But 

remember that during distributed builds pre-compiled headers are not always a win as instead of 

building multiple units in parallel by invoking multiple compilation processes precompiled 

headers aggregate the units thereby preventing the breaking of compilation to multiple units. 

Remember that if contents of a precompiled header change frequently, then the advantages 

thereof are negated. 

In our running example we had already alluded to pch.h and pch.cpp. These are the 

precompiled header and CPP files. The pch.h contain:

Precompiled headers

Pch.h (Autogenerated by VS)

Visual Studio gives 

excellent comment on 

precompiled headers. 



© 2020 | All rights reserved. Incredibuild Software Ltd. 20

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

The CPP file pch.cpp contains:

But more importantly, Visual Studio has set the options to create the precompiled header using 

this CPP

// pch.cpp: source file corresponding to the pre-compiled header

#include "pch.h"

// When you are using pre-compiled headers, this source file is 

necessary for compilation to succeed.

Pch.cpp

Options to create a 

precompiled header 

Options to use a 

precompiled header 



© 2020 | All rights reserved. Incredibuild Software Ltd. 21

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

May not always be 

supported. Cross platform 

code may need yout to 

write header guards by 

hand. Like so:

#ifndef UNIQUE_NAME

#define UNIQUE_NAME

… 

#endif

By using include guard, you can prevent a header file from being included multiple times during 

the compilation of a unit. In most of the projects that adhere to a coding standard (e.g., Google’s 

coding standard) all headers must have #define guards to prevent multiple inclusion. 

Developers are not always successful in coming up with unique names for header guards. This 

can harm the correctness of the code. Modern compilers provide a #pragma once macro that 

lets the compiler internally chose a unique name for the header guard. We advise using 

#pragma once wherever it is available. 

Intuitively, preventing a header from getting included multiple times will improve the compilation 

times. So, follow this advice diligently and see a marked reduction in compilation times of your 

C++ builds.

In our running example, we have always used #pragma once as header guards since our code is 

targeted for Microsoft Visual Studio compiler. If your code is cross platform and if any of the 

platform compiler do not support #pragma directive, it is better to create header guards by 

hand.

Include guards

https://google.github.io/styleguide/cppguide.html#The__define_Guard
https://google.github.io/styleguide/cppguide.html#The__define_Guard


© 2020 | All rights reserved. Incredibuild Software Ltd. 22

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

This approach is quite controversial but we still have seen this practiced to reduce compilation 

times of C++ builds. Although we don’t recommend it as it goes against the modular nature of 

compilation units and can also have significant penality on small incremental builds.

In this approach to improve build times, multiple compilation units (the CPP files) are combined 

into one single but a larger file. This improves the build times as duplicate effort in parsing 

multiple headers included in different CPP files is eliminated. The number of object files created 

during this technique is also reduced thereby reducing the link times. One disadvantage of using 

single compilation unit builds (unity builds) is that incremental builds are no longer possible 

when using this approach. It is also worth noting here that although header-only libraries have 

many benefits it increases the compilation time of your C++ builds. You can checkout the blog 

(https://onqtam.com/programming/2018-07-07-unity-builds/) for the pros and cons of unity 

builds.

Single compilation unit

We strongly advise against taking this route. Compilers are many times cleverer than the 

programmer and can greatly improve the run time performance of the code. It is not advisable 

to turn off compiler optimizations in the guise of improving build times. Usually, during debug 

builds, aggressive compiler optimizations are automatically turned off. This is to make sure that 

the debugged binary matches the source. Unless you are certain of what you are doing, we 

don’t recommend turning off compiler optimizations for improving compilation times.

Turn off compiler optimizations

https://onqtam.com/programming/2018-07-07-unity-builds/


© 2020 | All rights reserved. Incredibuild Software Ltd. 23

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

We strongly advise you to take this approach, of course. 

Incredibuild was created specifically to tackle the long compilation times of C++ builds. No 

wonder we are considered world leaders in build accelerators. 

Our Virtualized Distributed Processing™ technology harvests idle CPU across your network and 

the cloud, emulates your local environment on remote machines, and seamlessly turns every 

host into a supercomputer with hundreds—even thousands—of cores. This greatly improves 

build performance.

Here is how we do it: 

Distributed compilation – 
the incredibuild solution



© 2020 | All rights reserved. Incredibuild Software Ltd. 24

THE COMPLETE GUIDE TO SPEED UP YOUR C++ BUILDS

Agents installed on each host are connected to a centralized coordinator. Each host machine 

with an agent can use the idle power of all the other machines in the Incredibuild environment.

In organization environments, the aggregated number of idle CPUs can easily be in the 

thousands. The processing power of these wasted cores is effectively used to get faster builds.

From the user’s perspective here is what happens during an Incredibuild. 

It is as though the host machine is a supercomputer with hundreds of cores and the compilation 

workload is executed dramatically faster. 

Incredibuild runs processes on remote machines in a secure sandbox. Everything each process 

requires to run properly is dynamically emulated from the local host to the remote machine. We 

are safe and secure. 

To learn more visit our website or download our free license.

https://www.incredibuild.com/?utm_source=whitepaper&utm_medium=direct&utm_campaign=speed-up-cpp
https://www.incredibuild.com/free-trial?utm_source=whitepaper&utm_medium=direct&utm_campaign=speed-up-cpp



